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Removing Arbitrary-Scale Rain Streaks via Fractal
Band Learning With Self-Supervision
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Abstract— Data-driven rain streak removal methods, most of
which rely on synthesized paired data, usually come across the
generalization problem when being applied in real scenarios.
In this paper, we propose a novel deep-learning based rain
streak removal method injected with self-supervision to obtain the
capacity of removing more varied-scale rain streaks in practical
applications. To this end, in this work, efforts are made from
two perspectives. First, considering that rain streak removal
is highly correlated with texture characteristics, we create a
fractal band learning (FBL) network based on frequency band
recovery. It integrates commonly seen band feature operations
as neural forms and effectively improves the capacity to capture
discriminative features for deraining. Second, to further improve
the generalization ability of FBL to remove rain streaks of varied
scales, we incorporate scale-robust self-supervision to regularize
the network training. The constraint forces the extracted features
of an input rain image at different scales to be equivalent after
rescaling operations. Therefore, our method can offer similar
responses based on solely image content without the interference
of scale change and is capable to remove varied-scale rain
streaks. Extensive experiments in quantitative and qualitative
evaluations demonstrate the superiority of our method for rain
streak removal, especially for the real cases where very large rain
streaks exist, and prove the effectiveness of each component.

Index Terms— Rain streak removal, varied scale, frequency
band learning, self-supervision, deep network.

I. INTRODUCTION

BAD weather conditions bring about a series of visibility
degradations, e.g. occluding background scenes, alter-

ing the object content and changing contrast and color of
images, etc. Due to detail loss and signal distortion, these
degradations cause visual unpleasure and result in the failure
of many outdoor computer vision applications, which built
on taking high quality clean video frames as their input.
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As one of the most common degradations in rain frames, rain
streaks cause severe intensity changes and light fluctuations,
and hence obstruct and blur the background scene.

As many degradation factors cause information loss, it is
highly ill-posed to address single image rain removal problem.
Previous methods [28], [32], [47], [55] take single image
rain removal as a signal separation problem that separates
rain streaks and background images, namely the correspond-
ing rain-free versions, from their mixed versions. In these
works, various models are developed to extract rain streaks
and background images based on their texture appearance
patterns, such as frequency domain representation [32], sparse
representation [47], and Gaussian mixture model [43].

Recently, the appearance of deep learning gives rise to
deep-network based approaches. In [16], the image detail
layer without background interference is regarded as the input,
which directly reduces the mapping range from input to output
and makes the learning process easier. In [65], a deep network
is designed to jointly detects and removes rain streaks for
heavy rain cases. Successive works [42], [70] make great
efforts to make networks more effective and efficient.

These methods achieve good performance in some cases.
However, they still neglect some important issues:

• The degradations of rain scenes in real-world are very
complicated. Existing rain models often neglect the diver-
sity of rain scales. A model trained with streaks of a
scale is difficult to be generalized to handle streaks of
a different one. Some previous works [40], [64] make
preliminary attempts. However, they either use a few
times parameters of a single-scale model [40] or are
restricted to process the images of a certain scale whose
magnitude is the order of two compared to the scale
in the training phase [64]. However, a more economic
and flexible framework that is easily to be generalized to
process varied-scale rain images is still absent.

• Recent deep-learning based methods take pure
feed-forward CNN, ResNet or DenseNet etc. as
backbone methods. However, there is no theoretical or
conceptual connection between these neural models and
traditional theories. Such gap prevents us from injecting
task-driven image priors into a model and developing
novel competitive backbones.

• Models in previous data-driven methods are seldom
designed to capture frequency band dependency of
images explicitly. However, intuitively, rain removal is
a signal separation problem, where the features in the
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texture or frequency band domain play an important role.
Thus, the properties of traditional band theory provide
meaningful guidance to design a deraining network and
facilitate a more effective automatic feature learning.

Considering these limitations of existing works, we aim to
design a deep learning architecture with two notable features.
First, the developed architecture connects with frequency band
recovery theory. Second, it is capable of effectively restor-
ing clean images from inputs which contain rain streaks of
different scales that may not appear in the training set. To
this end, we first briefly illustrate the connections between
frequency band recovery and deep learning. Subsequently,
a band learning network is constructed to integrate most
of common frequency band feature operations, i.e. band
refinement, expansion, and fusion for rain streak removal.
Wiring them together in a unified network facilitates the
band-constrained automatic feature learning, leading to supe-
rior modeling capacity. Our network can be further augmented
into a fractal band learning (FBL) network by being stacked in
a fractal form. That is, the low-order constructed modules are
used as the basic unit of a high-order one, which is beneficial
to capturing potential hierarchical dependency among band
features. To further improve the generalization ability of
FBL to remove rain streaks of varied scales, a scale-robust
self-supervision is utilized to regularize network training.
FBL with self-supervision (FBL-SS) forces consistency of the
extracted features of inputs at different scales after zooming.
Therefore, FBL-SS can acquire scale-robust feature represen-
tation given input images at different scales. With the learned
band feature representations and the power of scale-robust
self-supervision, our FBL-SS is superior to previous deraining
networks and is capable to remove varied-scale rain streaks.
Our contributions are summarized as follows,

• We provide a novel understanding to link frequency band
recovery theory and deep learning. The conceptual links
between common band operations and learned neural
modules are revealed.

• Based on the above understanding, we develop an FBL
network based on frequency band structures, and the
joint consideration in spatial and frequency domains.
It performs band operations progressively and is further
augmented by being stacked in a fractal form. Extensive
experiments demonstrate the superiority of FBL for rain
streak removal objectively and subjectively, and prove the
effectiveness of its each components.

• A scale-robust self-supervision constraint is proposed to
regularize the training of a deraining network. The con-
straint guides the network to extract scale-robust features
and deal with rain images containing varied-scale rain
streaks. It can significantly benefit the rain removal on
real rain images at large scales.

The rest of this paper is organized as follows. Section II
briefly reviews the related work. Section III connects the
traditional band recovery theory and deep learning techniques,
designs new deep networks inspired by the connection, and
introduces scale-robust self-supervision to obtain better gen-
eralization capacity to handle rain streaks of varied scales.

Experimental results and concluding remarks are presented in
Sections IV and V, respectively.

II. RELATED WORKS

A. Single Image Rain Removal

Single image rain removal is highly ill-posed as the rain
streaks occlude and contaminate the background, causing a
loss of information. To address the issue, the earliest works
regard the single-image rain removal as a signal separa-
tion problem from the mixture of rain and background sig-
nals, based on texture patterns and the spatial redundancy.
Barron et al. [32] utilized sparse coding to extract the rain
layer from the high-frequency signal extracted by the bilateral
filter. In [4], Chen et al. developed a generalized low-rank
model that enforces the low-rank consistency among the adja-
cent rain frames to reveal randomly distributed rain streaks.
In [34], Kim et al. detected and removed rain streaks via the
non-local mean filter. Luo et al. [47] proposed a novel rain
image synthesis model “screen blend model”, which enables
to capture nonlinear relationship between the rain streaks and
backgrounds. Based on the model, the discriminative sparse
coding is then applied to extract rain streaks. In [43], online
learning is adopted and the Gaussian mixture model is applied
to capture the rain streak distribution of the input rain images.
In [3], Chang et al. injected the line pattern of rain streaks
into the proposed model via a rotated image decomposition
framework, and applied a compositional directional total vari-
ational model and low-rank prior to separate the rain streak and
background. In [79], Zhu et al. proposed an iterative deraining
process, where the background signal is removed from the rain
layer and the rain signal is separated from the background
layer progressively. Gu et al. [20] constructed a joint convolu-
tion analysis and synthesis sparse representation model. In this
model, an image is decomposed into two layers, where one
is approximated by the analysis sparse representation model
to represent image large-scale structures while the other is
modeled by the synthesis sparse representation to capture
fine-scale textures. In [59], Wang et al. proposed a 3-layer
hierarchical scheme consisting of both image decomposition
and dictionary to remove rains and snows.

In 2017, the presence of deep learning promotes the devel-
opment of single-image deraining and various deep-learning
based deraining methods are designed. In [16], a deep network
is utilized to estimate the negative residue based on the initially
extracted high-frequency details. In [64], [65], a deep network
is built to perform rain streak detection and removal jointly,
and at the same time to handle rain streaks and accumulation
recurrently. In [40], to remove the rain streaks of different
scales, several parallel sub-networks are particularly trained
with those streaks respectively and then the results are fused
to generate the final prediction. Dong et al. [70] first detected
rain density and then adopted a multi-scale dense network
to remove rain streaks with density guidance. In [50], a pro-
gressive recurrent network is built via repeatedly unfolding
a shallow network, with recurrent layers injected with gate
units to model dependencies of deep features among different
recurrent stages for rain streak removal. In [17], the Gaussian
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Laplacian image pyramid decomposition is introduced into
deep networks, which makes the learning process easier and
the deraining process more efficiently. In [68], the network
first extracts the rain content at different scales as well as its
confidence measure. Then, guided by this content, the final
derained output is obtained. In [58], a large-scale dataset with
rain/rain-free image pairs is captured. After that, a spatial
attentive network is built to remove rain streaks from local
to global. In [25], Hu et al. created a new dataset with rain
streaks and accumulation and designed an end-to-end deep
network to extract the depth-attentional features for regressing
the residual signal.

Following [16], [40], [65], [70], our work also follows the
route of deep-learning based single image rain streak removal.
In particular, we construct a deep network motivated by band
recovery theory. The domain gap in streak scales between
training and testing phases is addressed by network training
with self-supervision. Compared to [65], [66], which jointly
detects and removes rain streaks, our work additionally focuses
on the generalization performance of rain streak removal meth-
ods especially when rain streaks of different sizes are met. The
work in [64] also aims to improve the generalization capacity
to handle rain streaks of different scales and it constructs a
recurrent neural network via unrolling the wavelet transform.
Comparatively, our work is based on self-supervised learning
and introduces the scale-robust feature-level supervision to
obtain more robust feature learning and achieve superior
deraining performance.

B. Deep-Learning Based Image Processing and Related
Architectures

In recent years, deep learning has brought fast developments
to the field of image processing. The related applications
include denoising [72], [78], super-resolution [9], [62], [63],
deblurring [52], compression artifact removal [8], [74], and
style transfer [19], etc. recent works begin to pay attention
to bad weather restoration or image enhancement, e.g. dehaz-
ing [2], [6], raindrop and dirt removal [12], [48], low-light
enhancement [46], [61], [67], color constancy [1], and under-
water enhancement [39], etc. Besides, due to its distinguished
capacity to model complex mappings from the degraded
images/videos, deep networks have been applied to addressing
more sophisticated issues, such as blind image denoising [72],
image compression [27], [31], quality assessment [13], texture
smoothing [80] and video coding [26], [44], [45], [76].

The commonly used network architectures for image
processing include feed-forward CNN, U-Net, ResNet,
DenseNet and the combination of them. The earliest
works employ the simplest feed-forward CNN, such as
super-resolution convolutional neural network [9] and artifacts
reduction convolutional neural network [8]. U-Net [69], [73]
is another simple but powerful network architecture consisting
of an encoder and decoder that down-sample feature maps and
then up-sample them progressively. Skip connections are used
to connect the feature maps from the encoder to decoder to
avoid the resolution loss.

The rise of ResNet and DenseNet has further promoted
the development of the related tasks. For example, in very

deep super-resolution [33] and super-resolution dense net-
work [57], ResNet and DenseNet brings in performance leaps,
respectively. From the perspective of feature learning, it leads
to better representations of pixels and their contexts for the
low-level image processing via refining features progressively
like ResNet [24] or concatenating and fusing features from
different levels like DenseNet [29]. The related beneficial
tasks include super-resolution [38], [56], [63], [75], [77],
dehazing [21], [77], inpainting [10], compression artifacts
removal [18], and deblurring [36]. In [63], Yang et al. made
efforts in explaining the connection between ResNet and
traditional frequency band recovery theory, and injected the
edge information into the ResNet as the prior to infer more
accurate high-frequency details. In [10], [18], [36], [38],
ResNet is adopted as the generator in the generative adversarial
networks. In [77], Zhang et al. constructed a densely connected
encoder-decoder network injected with the edge-preserving
constraint to infer the transmission map for image dehazing.
In [56], Tai et al. integrated recursive units, gate units and the
densely connected structure to simulate the human persistent
memory for image restoration. Zhang et al. [77] proposed a
network that integrates ResNet and DenseNet. Dense blocks
are utilized to extract dense local features. All features in each
dense block are connected by residual connections, and then
fused in the last layer. In [75], residual in residual structure
is proposed to construct a very deep network, where several
residual groups are cascaded and connected with long skip
connections. In [22], by unrolling back-projection process,
iterative up- and down-sampling layers are stacked into a dense
network. The different layers that perform at different scales
are mutually-connected for image super-resolution.

In our work, we inherit the advantages of these previous
works, and provide a unified viewpoint, i.e. band recovery
theory, to understand deep networks for low-level visions.
Furthermore, along this vein, we develop a new effective
backbone for rain streak removal.

III. FRACTAL BAND LEARNING

A. From Band Recovery to Deep Learning

In [63], a systematic paradigm is provided to establish
the relationship between ResNet [24] and band recovery.
The signal is reconstructed progressively with two steps: 1)
Residual block FRB first generates a new band signal ft based
on a previous band estimator ft−1; 2) A summation is used
to combine the new band signal (residue) FRB( ft−1) and the
input (previous band estimators) ft :

ft = FRB( ft−1) + ft−1, (1)

where FRB(·) denotes the process of residual block. This
analysis only covers parts of band recovery characteristics.
When we review the classical band filter representations, e.g.
wavelet [11], steerable filter [14], ringlet [7], and the related
processing methods based on them [53], [54], four critical
properties are revealed:

• Band refinement. The given band features extracted from
the source domain, e.g. a rain image, are transformed into
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Fig. 1. The framework of our proposed fractal band learning constrained by scale-robust self-supervision (FBL-SS) for rain removal. It performs learned band
feature operations progressively and is augmented by being stacked in a fractal form. The model is trained with image-level reconstruction constraint (LRect),
feature-level scale-robust self-supervision loss (LFeat), and detail enhancement constraint (LDetail). LRect guarantees the accuracy of rain removal results
at the training scale, and the rough signal fidelities at larger or smaller scales, since some small details are poorly regularized due to rescaling operations.
LFeat enforces consistency of the feature responses of the network across different scales. LDetail focuses on compensating for the lost details caused by the
rescaling operations used in LRect and LFeat.

the target domain, e.g. a rain-free image. As the analysis
above, ResNet works in this way.

• Band expansion. One band feature is split into sev-
eral band features, and the total band feature number
is increased. The popular DenseNet [29] provides this
capacity. However, it will rapidly increase the number of
used parameters. Thus, in our work, we choose a more
parameter-economic way – directly forwarding parts of
features to a certain layer, where all forwarded features
are concatenated as a broader one.

• Band fusion. Several band features are combined into a
more compact one. This can be achieved effectively by
1 × 1 convolutions.

• Hierarchical dependency among different bands. Many
of hand-crafted frequency band features are organized
into a hierarchical structure. High-order bands usually
have intrinsically potential connections to some low-order
bands. We use fractal architectures, i.e. [37], following
this rule.

In our work, we fully consider these properties and build our
FBL based on their corresponding deep modules.

B. Overview of Fractal Band Learning

The framework of our proposed FBL for rain streak removal
is illustrated in Fig. 1:

• Fractal Band Learning (FBL). We target at building
a deep network based on band recovery theory to cap-
ture the hierarchical band dependency using end-to-end
trainable components. Motivated by the basic elements of
band operations, FBLs conduct band feature refinement,
expansion and fusion operations in a band recovery para-
digm, as shown in Fig. 1. To model the hierarchical band
dependency, FBL is designed with a fractal structure. The
constructed refine unit (RUt ) is used as the basic unit of

a higher-order one (RUt+1). In RUt , a band feature is
refined progressively in a residual learning manner. The
residue bands are generated by refine units (RU). Then,
parts of each residue band are forwarded into the last
layer, where they are concatenated with the output band
feature of the penultimate layer and fused into a narrow
band by a fusion unit (FU). On top of Fig. 1, changes
of the band feature dimension in the learning process
are provided. The summation operations in dash boxes
signify residual additions. From left to right, the band
features are refined. Band features are expanded and fused
in turn at the penultimate layer.

• Scale-Robust Self-Supervision. To handle scale vari-
ance of rain streaks, we impose additional constraints
on the network such that extracted features tend to be
scale-invariant for different scales. The basic idea is
that the network should have similar responses when
the input rainy images are with the same content but
at different scales. In other words, the network should
process rainy images in the same way no matter what
scale the images are at. Therefore, for a given input
image I1, we may up-sample it into Iz or down-sample
it into I1/z , and then enforce the extracted feature Fz to
be similar to F1 after down-sampling, or F1 to be similar
to F1/z after down-sampling as shown in Fig. 1. After
training with this constraint, the extracted features are
more scale-invariant and the model is better at removing
rain streaks of varied scales.

• Detail Enhancement Constraint. Scale-robust
self-supervision constraint enforces the consistency
of features generated by the network at different scales.
However, the rescaling operations that the constraint
includes cause the detail loss. To preserve or even
enhance high-frequency details, we introduce the detail
enhancement constraint. The same network takes blurred
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Fig. 2. The framework of our band learning. The left side presents network
structures. The bottom side illustrates band feature dimension changes during
the learning process.

non-rain images as its input and predicts sharp images
as its output. Thus, when facing rainy images with very
large rain streaks, the network is capable of removing
the large streaks while preserving details well.

C. Fractal Band Learning

Rain streak removal is intrinsically a texture-related signal
separation problem. Thus, we seek to utilize the properties
of traditional band recovery to guide the network design and
facilitate a more effective automatic feature learning with band
constraints. Four properties are of great importance: band
refinement, expansion, fusion and hierarchical dependency. In
this section, we build our FBL following these rules step by
step.

1) Feed-Forward CNN: The network structure used in
SRCNN [9] is shown in Fig. 2 (a). The feature ft is trans-
formed through a chain of convolutions:

ft = σ(Wt ∗ ft−1 + bt ), (2)

where ∗ and σ denote the convolution operation and ReLU
activation function, respectively. Wt and bt are the weights
and biases of the t-th convolution layer, respectively. Even in
its simplest fashion, stacking more layers usually lead to an
improved network capacity.

However, increasing the layer number may face the problem
of vanishing gradient in the learning. In other words, it is
difficult to pass tiny errors from very deep layers back to
shallow layers, which causes the trained models to have
difficulties in high frequency detail reconstruction.

2) ResNet: To characterize tiny structures in signals, resid-
ual network is employed in VDSR [33] and DEGREE [63].
As shown in Fig. 2 (b), each residual block extracts a residue
and adds it with the original signal:

ft = FRB( ft−1) + ft−1, (3)

where FRB(·) denotes the feature transform of residual block.
It can be set as stacked convolutions or more complicated

modules. As discussed in [63], this operation equals to pro-
gressive band refinement, which facilitates high frequency
detail reconstruction.

3) Band Learning: In ResNet, extracting a wide band
feature, namely expanding the channel number of the whole
network, is expensive. Thus, we propose a band learning to
include the operations of band expansion and fusion. The
features are refined by RU:

ft = FRU( ft−1) + ft−1, (4)

where FRU(·) denotes the feature transform of RU, which
usually consists of two or three stacked convolutions. Then,
we perform band expansion. ft is split into two band fea-
tures ft = [at , bt ]. at is forwarded to the penultimate layer
by a skip connection. At the penultimate layer n − 1, all
{at |t = 1, 2, . . . , n − 2} are concatenated with the last output
feature fn−1:

fexpansion = [
a1, a2, a3, . . . , an−2, fn−1

]
. (5)

Subsequently, we conduct band fusion to transform fexpansion
into a narrow one:

fn = FFU
(

fexpansion
)
, (6)

where FFU(·) denotes the feature transform of FU, which
usually is set to a 1 × 1 convolution. At last, fn is added
with the input feature fin of the whole module to generate the
output feature fout:

fout = fin + fn . (7)

As observed from the bottom side of Fig. 2 (c), the infor-
mation is updated regularly, expanded and fused at the end.

4) Fractal Band Learning: In addition to the band prop-
erties – refinement, expansion and fusion introduced before,
the potential hierarchical structure and dependency among
band features are also important for signal modeling. Thus,
we extend our band learning to fractal band learning. The
architecture is presented in Fig. 1. The constructed mod-
ule RUt is used as RU of a high-order one RUt+1. Our
FBL performs band feature operations at different levels,
and the learned band features are extracted along the tree
structure of FBL. Thus, it is capable of not only keeping
global structures but also reconstructing the high-frequency
details.

From the viewpoint of band feature dimension changes (in
the bottom of Fig. 2 (c)), the information is processed and
flowed to the end. In Fig. 2 (a), the information is directly
to the end. In Fig. 2 (b), the information is updated regularly
without dimension changes. In Fig. 2 (c), the information is
updated regularly, expanded and fused at different levels many
times, thus a meaningful band feature is obtained.

D. Scale-Robust Self-Supervision

For the input image I1 (the subscript denoting the relative
scale of this image to the original one), besides constraining
the generated result, which at the end is combined with I1
to approach B1, we also enforce the rescaling version of
the extracted features, e.g. Pz , P1, P1/z , to be similar. We
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first define three operations FFBL(·), Fup(·), and Fdown(·)
to denote the processes of transforming features by FBL,
up-sampling and down-sampling operations, respectively.
Then, we rescale the input image I1 randomly with a scaling
factor (z = 2, 3, 4) for both down-sampling and up-sampling
into a zooming-out image I1/z or zooming-in one Iz as
follows,

Iz = Fup (I1, z),

I1/z = Fdown (I1, z). (8)

Then, these input images I1, I1/z , and Iz are feed-forwarded
into FBL to obtain the corresponding features P1, P1/z , and
Pz as follows,

P1 = FFBL (I1),

P1/z = FFBL
(
I1/z

)
,

Pz = FFBL (Iz). (9)

Subsequently, their consistency is ensured as follows,

LFeat (P1, Pz) = �P1 − Fdown (Pz, z)�, (10)

or

LFeat
(
P1, P1/z

) = ∥∥Fdown (P1, z) − P1/z
∥∥. (11)

It is worth mentioning that, to avoid the resolution loss in the
rescaling process, we always down-sample a feature map to a
smaller one in the consistency measurement.

E. Detail Enhancement Constraint

The components mentioned above may lead to detail loss
when dealing with images with large rain streaks, since
the rescaling operations used to construct the reconstruction
constraint and feature consistency lead to the ignorance of
recovering details. Therefore, we add the detail enhancement
constraint to remind the network of detail preservation or
enhancement. For a rain-free input S1, we first down-sample
it into S1/z by a factor of z and then up-sample it back to
the original scale S1/z,z to generate a blurred image. Then,
the same deraining network takes S1/z,z as its input and
generates the output Ŝ1, which is constrained to be close to
S1 as follows,

Ŝ1 = FRect
(
FFBL

(
S1/z,z

)) + S1/z,z,

LDetail

(
S1, Ŝ1

)
=

∥∥∥S1 − Ŝ1

∥∥∥, (12)

where FRect(·) denotes the process to generate the negative
rain layer or detail enhancement layer.

F. Network Training

Suppose we have a collection of paired rain and rain-free
images

{
yi , xi

}
i=1,...,N , where N is the total number of

training samples. Then, we rescale each sample using Bilinear
interpolation to get

{
yi

z, xi
z

}
i=1,...,N and

{
xi

1/z,z, xi
}

i=1,...,N
with random scaling factor z = {2, 3, 4}. For convenience
of representations, we at first only focus on the cases where
z > 1. We use �, x̂ i

z , Pi
z to denote all the parameters in FFBL,

the output by FBL and its generated feature. We use FStreak (·)
to represent the process of extracting negative streaks from the
input images, namely FRect (FFBL (·)). We adopt the following
loss function to train FFBL (·) and FRect (·):

L(�) = 1

2N

N∑
i=1

∑
z>1

(
λz

(
w1 Li

Rect,z(�)+w2Li
Feat,z(�)

+ w3 Li
Detail,z(�)

))
,

Li
Rect,z(�) =

∥∥∥FDown

(
FStreak(yi

z; �), z
)

+ yi − xi
∥∥∥,

Li
Feat,z(�) =

∥∥∥FDown

(
FFBL(yi

z; �), z
)

,−FFBL(yi ; �)
∥∥∥,

Li
Detail,z(�) =

∥∥∥FStreak(xi
1/z,z; �) + xi

1/z,z − xi
∥∥∥, (13)

where λz , w1, w2, and w3 are weighting parameters consid-
ering both relative area of images/features and importances of
different terms. When z < 1, i.e. z = {1/2, 1/3, 1/4}, we use
the following loss to train our network:

L(�)= 1

2N

N∑
i=1

∑
z<1

(
λz

(
w1 Li

Rect,z(�)+w2Li
Feat,z(�)

))
,

Li
Rect,z(�)=

∥∥∥FStreak(yi
z; �) + FDown

(
yi − xi , 1/z

)∥∥∥,

Li
Feat,z(�)=

∥∥∥FDown

(
FFBL(yi

z; �), 1/z
)

,−FFBL(yi ; �)
∥∥∥.

(14)

In this case, up-sampling operations are not involved. Thus,
we do not introduce detail enhancement constraint.

The training images are cropped into small sub-images
with a size of 64 × 64 pixels. We train our model on
Pytorch. ADAptive Moment estimation (ADAM) [35] is used
for training the model. The batch size and weight decay are set
to 16 and 0.0001, respectively. The network is initialized by
MSRA algorithm [23]. In particular, we set the learning rate
as 0.0001 throughout the whole training procedure. We only
allow at most 200 epochs.

IV. EXPERIMENTS

A. Dataset

We compare our method with state-of-the-art methods on
a few benchmark datasets: (1) Rain100L [65], which is the
synthesized data set with only one type of rain streaks;
(2) Rain100H [65], which is the synthesized data set with five
streak directions; (3) Rain100H-S2 and Rain100-S3 proposed
in [64], synthesized with s rain streaks (s ∈ {2, 3, 4, 5})
with different shapes and directions. The streak sizes are
twice and three times as large as those in Rain100H, used
for evaluating the performance when training and testing
streaks have different sizes. (4) Rain800 [71], a collection of
diversified synthesized rain images from randomly selected
outdoor images, which is split into testing set of 100 image
and training set of 700 images. (5) Rain1400 [16], including
12,600 paired training images and 1,400 paired testing images.
(6) Rain1200 [70], including 12,000 paired training images
and 1,200 paired testing images.
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Fig. 3. Visual quality comparison of different rain removal algorithms on a synthesized rain image from Rain100H. It is observed that, our FBL successfully
removes most rain streaks and better preserves texture details. Zooming-in the figure will provide a better look at the restoration quality. Enlarged results are
provided in the supplementary material.

B. Baseline Methods

We compare our method with seven state-of-the-art meth-
ods: image decomposition (ID) [32], discriminative sparse
coding (DSC) [47], layer priors (LP) [43], CNN-based rain
drop removal (CNN) [12], deep detail network (Detail-
Net) [16], directional global sparse model (DGSM) [5], joint
convolutional analysis and synthesis (JCAS) [20], density-
aware multi-stream dense network (DID-MDN) [70], joint
rain detection and removal (JORDER) [65], recurrent squeeze-
and-excitation context aggregation net (RESCAN) [42], and
recurrent wavelet learning (RWL) [64]. DetailNet, RESCAN,
and JORDER are retrained with the online available codes.
Other methods are directly evaluated with the online available
codes. RWL is implemented by ourselves.

For the experiments on synthesized data, two metrics Peak
Signal-to-Noise Ratio (PSNR) [30] and Structure Similarity
Index (SSIM) [60] are used as comparison criteria. We eval-
uate the results only in the luminance channel, which has a
significant impact on the human visual system to perceive the
image quality.

C. Quantitative Evaluation

Tables I and II show the results of different methods
on Rain100L, Rain100H, and Rain800. As observed, our
method considerably outperforms previous methods in terms
of both PSNR and SSIM. The PSNR of our FBL gains over
RESCAN more than 3dB on Rain100H and almost 1dB on

TABLE I

PSNR RESULTS AMONG DIFFERENT METHODS ON

Rain100L, Rain100H, AND Rain800

Rain800. Such a large gain demonstrates the effectiveness of
proposed FBL on synthesized heavy rain images. We also
compare our FBL on two popular datasets: Rain1400 [16] and
Rain1600 [70] in Table III. Our method also achieves superior
performance gains to previous methods, which provides useful
evidence regarding the effectiveness of our method.
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Fig. 4. Visual quality comparison of different rain removal algorithms on a synthesized rain image from Rain800. It is observed that, our FBL successfully
removes most rain streaks and better preserves texture details. Zooming-in the figure will provide a better look at the restoration quality. Enlarged results are
provided in the supplementary material.

TABLE II

SSIM RESULTS AMONG DIFFERENT METHODS ON
Rain100L, Rain100H, AND Rain800

D. Qualitative Evaluation

Figs. 3-8 show the results of synthesized and real images
with rain streaks of different scales. As observed, our method
significantly outperforms previous state-of-the-art methods. In
general, JORDER, RESCAN and FBL achieve better visual

TABLE III

PSNR AND SSIM RESULTS OF DIFFERENT METHODS ON
Rain1400 AND Rain1200

quality than other methods. As shown in Figs. 3-8, our FBL
is better at removing rain streaks than JORDER and RESCAN,
especially for large rain streaks. Besides, our FBL is also
superior to other methods in detail preservation. Fig. 3 and
Fig. 4 show the results of different methods on two synthetic
images from Rain100H and Rain800, respectively. The input
image in Fig. 3 includes long and sharp rain streaks while
that in Fig. 4 includes moderate-size and blurry streaks. The
results demonstrate that our method successfully removes both
kinds of rain streaks. Fig. 5 shows the results of a real image
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Fig. 5. Visual quality comparison of different rain removal algorithms on a real rain image. It is observed that, our FBL-SS successfully removes most rain
streaks and better preserves texture details. Zooming-in the figure will provide a better look at the restoration quality. Enlarged results are provided in the
supplementary material.

including very large and abrupt rain streaks. It is clearly
showed that, without the consideration of generalization per-
formance to handle rain streaks of different scales, most
methods (Fig. 5(b)-(f)) fail to remove very large rain streaks.
Benefiting from the recurrent inference, RWL can better
remove large streaks. Comparatively, our method obtains the
cleanest result with very clear details. Fig. 6 shows the results
of a real image including moderate-size and blurry streaks.
The results also demonstrate the superiority of our method
to remove blurry streaks and our result owns the cleanest
background. Fig. 7 includes the results of an image with sparse
and small streaks, our method is capable to remove most
of the streaks while generating fewer artifacts. Fig. 8 shows
the results of a synthesized rain image (Rain100H-S2),
while its scale is different from that of the training set
(Rain100H). In this case, the superiority of our method can be
observed more clearly. In our result, the background is well
restored while those of other methods include obvious visual
artifacts.

E. Running Time Comparison

The running time of different methods is presented
in Table IV. It is observed that, our FBL is comparable to
other recent deep learning methods in time complexity and
runs much faster than traditional optimization-based methods.

F. Evaluation on Streak Size Mismatch

To prove the effectiveness of our FBL-SS to handle the
streak size mismatch problem between training and test-
ing phases, we evaluate different methods on two testing

TABLE IV

THE RUNNING TIME (IN SECONDS) OF DIFFERENT METHODS.
(G) AND (C) DENOTE THE IMPLEMENTATION ON GPU

AND CPU, RESPECTIVELY. THE SIZE OF THE

TESTING IMAGE: 500 × 500

TABLE V

PSNR AND SSIM RESULTS WHEN TRAINING AND TESTING STREAK
SIZES ARE DIFFERENT. FBL-SS DENOTES THE PROPOSED FBL

DERAINING METHOD WITH SCALE-ROBUST SELF-SUPERVISION

sets, Rain100H-S2 and Rain100H-S3 [64]. The streak sizes
of these two sets are twice and three times of those in
Rain100H, respectively. The testing results are provided
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Fig. 6. Visual quality comparison of different rain removal algorithms on a real rain image. It is observed that, our FBL-SS successfully removes background
rain streaks. Zooming-in the figure will provide a better look at the restoration quality. Enlarged results are provided in the supplementary material.

Fig. 7. Visual quality comparison of different rain removal algorithms on a real rain image. It is observed that, our FBL-SS successfully removes most rain
streaks and better preserves texture details. Zooming-in the figure will provide a better look at the restoration quality. Enlarged results are provided in the
supplementary material.

in Table V. It is observed that, FBL-SS achieves supe-
rior performance than RWL, another state-of-the-art method
that also aims to handle varied-scale rain streaks removal.

The gain is more than 1.3 dB on Rain100H-S2 and
2 dB on Rain100H-S3. Some visual comparison is provided
in Fig. 8.
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Fig. 8. Visual quality comparison of different rain removal algorithms on a synthetic rain image from Rain100H-S2. It is observed that, our FBL-SS
successfully removes most rain streaks and better preserves texture details. Zooming-in the figure will provide a better look at the restoration quality.

TABLE VI

THE ABLATION ANALYSIS FOR OUR FBL. R DENOTES REFINEMENT.
E&F DENOTES BAND EXPANSION AND FUSION. F DENOTES

FRACTAL STRUCTURE. SR DENOTES SCALE-ROBUST

CONSTRAINT. THE EVALUATIONS ARE

PERFORMED ON Rain100H

G. Ablation Study for Network Structures

We compare five versions of our network: forward
CNN, residual network (ResNet), fractal residual network
(F-ResNet), sequential band learning (SBL), and fractal band
learning (FBL). Their compositions and results are presented
in Table VI. For a fair comparison, the number of the convolu-
tion units used in all versions is set to 36. Except for the first
convolution, the last convolution, and the convolutions used
for band fusion, the channel numbers of all convolutions are
set to 64. Thus, these methods have only slight differences in
their parameter numbers. It is observed that, each component
contributes to the final performance. The comparison between
ResNet and SBL demonstrates the effectiveness of band
expansion and fusion. The comparisons between ResNet and
F-ResNet, SBL and FBL illustrate the importance of fractal
structures. Note that, the streak scales of the training and

TABLE VII

CROSS DATASET EVALUATION

testing data have no domain shift. Therefore, the superiority
of the self-robust constraint that helps our model handle more
varied scale rain streaks cannot be witnessed in the comparison
between FBL and FBL-SS.

H. Ablation Study for Self-Supervision

The scale-robust self-supervision provides the capacity of
“scale-robust” rain removal. We perform an ablation analysis
on real images in Fig. 9. It is observed that, the results
generated by FBL-SS (with self-supervision) are obviously
better than FBL (without self-supervision).

I. Cross Dataset Evaluation

We perform cross dataset evaluations where the model is
trained on the training set of Rain100H/Rain100L and test
on the testing set of Rain100L/Rain100H. The PSNR results
show the superior generality capacity of FBL compared to
previous methods as shown in Table VII. It is demonstrated
that, our FBL is capable to not only fit the texture patterns of
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TABLE VIII

DETECTION RESULTS (MAP %) ON A SUBSET OF RID DATASET [41] BY FASTER R-CNN [51]
AND YOLOV3 [49]. THE BEST RESULTS ARE DENOTED IN BOLD

Fig. 9. Ablation study for self-supervision. FBL performs rain removal by
the FBL trained without self-supervision. FBL-SS performs rain removal by
the FBL trained with self-supervision.

rain streaks in the given training set but also explore intrinsic
useful information for rain streak removal in the general
sense.

J. CV Task Evaluation

We then study the object detection performance on the
rain input images and the corresponding derained results by
different methods, using the state-of-the-art object detection
models: Faster R-CNN [51] and YOLOv3 [49]. The mean
Average Precision (mAP) results are adopted to compare all
algorithms and the pre-trained models on MS COCO are used.
A subset of RID dataset [41], whose name start will ‘H’ and
‘W’ including 402 images, is used for comparison. The results
are shown in Table VIII. It is observed that, LPNet [17],
PReNet [50] and SPANet [58] lead to degraded performance.
Comparatively, UMRL [68] and the proposed FBL can slightly
boost the detection performance. The results demonstrate
that, our method is not only capable to remove rain streaks
to benefit human vision experience but also can restore
high-level semantic information that benefits the machine
vision.

V. CONCLUSION

In this paper, we design a fractal band learning network
trained with self-supervision to remove rain streaks of varied
scales. Our motivations originate from two aspects. First, rain
streak removal is highly correlated to frequency domain analy-
sis. Therefore, we build a fractal band learning network to
perform frequency band feature operations, which outperforms
previous deraining methods on all synthesized paired testing
sets. Second, we enforce the learned features of an image at
different scales extracted by our FBL consistent after rescaling
operations to handle the rain streaks of unseen scales. This
constraint effectively benefits removing rain streaks in real
images. Extensive experimental results demonstrate the superi-
ority of our method in rain streak removal to previous methods
and also show the effectiveness of its each component.
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